# 2020 Water Quality Report

DATA FOR 2019



FOUNTAIN VALLEY Public Works Department

## Your 2020 Water Quality Report

Since 1990, California public water utilities have been providing an annual Water Quality Report to their customers. **This year's report covers calendar year 2019 drinking water quality testing and reporting.** The City of Fountain Valley Water Department (City) vigilantly safeguards your water supply and, as in years past, the water delivered to your home meets or exceeds the quality standards required by federal and state regulatory agencies. The U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board, Division of Drinking Water (DDW) are the agencies responsible for establishing and enforcing drinking water quality standards.

Pursuant to the California Safe Drinking Water Act, the City monitors over 100 chemicals in your water supply. This report includes only the chemicals actually detected in the water. In some cases, the City goes beyond what is required by testing for unregulated chemicals that may have known health risks but do not have drinking water standards. Unregulated chemical monitoring helps USEPA and DDW determine where certain chemicals occur and whether new standards need to be established for those chemicals to protect public health.

Through drinking water quality testing programs carried out by the Orange County Water District (OCWD) for groundwater, the



Metropolitan Water District of Southern California (MWDSC) for treated surface water, and the City for the water distribution system, your drinking water is constantly monitored from source to tap for contaminants that are regulated and unregulated.

The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Therefore, some of our results, though representative of current conditions, are more than one year old.

# The Quality of Your Water Is Our Primary Concern

## Sources of Supply

The City's water supply is a blend of groundwater from six City wells and one imported water connection originating from Northern California and the Colorado River by the Municipal Water District of Orange County (MWDOC) via MWDSC. Groundwater comes from a natural underground aquifer that is replenished with water from the Santa Ana River, local rainfall, recycled Groundwater Replenishment System (GWRS) water, and imported water. The groundwater basin is 350 square miles and lies beneath north and central Orange County from Irvine to the Los Angeles County border and from Yorba Linda to the Pacific Ocean. More than 20 cities and retail water districts draw from the basin to provide water to homes and businesses.

## Orange County's Water Future

For years, Orange County has enjoyed an abundant, seemingly endless supply of high-quality water. However, as water demand continues to increase statewide, we must be even more conscientious about our water supply and maximize the efficient

use of this precious natural resource.

OCWD and MWDOC work cooperatively to evaluate new and innovative water management and supply development programs, including water reuse and recycling, wetlands expansion, recharge facility construction, ocean and brackish water desalination, surface storage and water use efficiency programs. These efforts are helping to enhance long-term countywide water reliability and water quality.



A healthy water future for Orange County rests on finding and developing

new water supplies, as well as protecting the quality of the water that we have today. Your local and regional water agencies are committed to making the necessary investments today in new water management projects to ensure an abundant and high-quality water supply for our future.

## Basic Information About Drinking Water Contaminants

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of land or through the ground it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- Radioactive contaminants, that can be naturally occurring or be the result of oil and gas production or mining activities.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can

also come from gas stations, urban stormwater runoff, agricultural application and septic systems.

 Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses.

In order to ensure that tap



water is safe to drink, USEPA and the DDW prescribe regulations that limit the amount of certain contaminants in water provided by public water systems.

The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

## Immuno-Compromised People

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised people, such as those with cancer who are undergoing chemotherapy, persons who have had organ transplants, people with HIV/AIDS or other immune system disorders, some elderly persons and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease



Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline, (800) 426-4791.

## Questions about your water? Contact us for answers.

For information or concerns about this report, or your water quality in general, please contact Kevin Deason, Water Quality Technician, at (714) 593-4624, send an email to kevin.deason@fountainvalley.org, or visit the City's website at www.fountainvalley.org.

You may also address your concerns at the regularly scheduled City Council Meetings held at City Hall at 10200 Slater Avenue in Fountain Valley on the first and third Tuesdays of each month at 6:00 pm in the City Hall Council Chambers. Please feel free to participate in these meetings. The City firmly believes in the public's right to know as much as possible about the quality of their drinking water and the health of their watershed.

Your input and concerns are very important to us.

For more information about the health effects of the listed contaminants in the following tables, call the USEPA hotline at (800) 426-4791.

## Federal and State Water Quality Regulations - Water Quality Issues that Could Affect Your Health

### **Drinking Water Fluoridation**

Fluoride occurs naturally in the City's water supplies. In addition to the natural levels, the City's water system adds a small concentration of sodium fluoride to the water to promote dental benefits per a majority vote of the community. Fluoridating the water especially helps to prevent tooth decay in children. Because of the dramatic health benefits of fluoridating drinking water, a 1997 assembly bill of the state of California has mandated all large system water suppliers to begin fluoridating their systems. In 2007 MWDSC began fluoridation of their water supply. The City's water is fluoridated to the DDW optimal range between 0.6 to 1.2 parts per million.

There are many places to go for additional information about the fluoridation of drinking water.

> **U.S. Centers for Disease Control and Prevention:** 1-800-232-4636 • www.cdc.gov/fluoridation/

State Water Resources Control Board, Division of Drinking Water: www.waterboards.ca.gov/drinking\_water/certlic/

drinkingwater/Fluoridation.html

For more information about MWDSC's fluoridation program, please contact Edgar G. Dymally at (213) 217-5709 or at edymally@mwdh2o.com.



## What are Water Quality Standards?

Drinking water standards established by USEPA and DDW set limits for substances that may affect consumer health or aesthetic qualities of drinking water. The chart in this report shows the following types of water quality standards:

- · Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible
- Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- · Secondary MCLs: Set to protect the odor, taste, and appearance of drinking water.
- Primary Drinking Water Standard (PDWS): MCLs, MRDLs and Treatment Techniques (TTs) for contaminants that affect health, along with their monitoring and reporting reauirements.
- Regulatory Action Level (AL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements that a water system must follow.

#### How are Contaminants Measured?

Water is sampled and tested throughout the year. Contaminants are measured in:

- parts per million (ppm) or milligrams per liter (mg/L)
- parts per billion (ppb) or micrograms per liter (µg/L)
- parts per trillion (ppt) or nanograms per liter (ng/L)

#### What is a Water Quality Goal?

In addition to mandatory water quality standards, USEPA and DDW have set voluntary water quality goals for some contaminants. Water quality goals are often set at such low levels that they are not achievable in practice and are not directly measurable. Nevertheless, these goals provide useful guideposts and direction for water management practices. The chart in this report includes three types of water quality goals:

- Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by USEPA.
- Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- · Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

#### 2019 City of Fountain Valley Drinking Water Quality Local Groundwater and Metropolitan Water District Treated Surface Water

| Chemical                                     | MCL           | PHG<br>(MCLG) | Avg. Local<br>Groundwater | Avg. MWD<br>Surface Water | Range of<br>Detections | MCL<br>Violation? | Typical Source of Contaminant                    |
|----------------------------------------------|---------------|---------------|---------------------------|---------------------------|------------------------|-------------------|--------------------------------------------------|
| Radiologicals – Tested in 20                 | )13, 2017, ar | d 2019        |                           |                           |                        |                   |                                                  |
| Beta Radiation (pCi/L)                       | 50*           | (0)           | < 4                       | ND                        | ND – 4.62              | No                | Decay of Man-made or Natural Deposits            |
| Uranium (pCi/L)                              | 20            | 0.43          | 2.7                       | ND                        | ND - 6.8               | No                | Erosion of Natural Deposits                      |
| Inorganic Chemicals – Teste                  | ed in 2019    |               |                           |                           |                        |                   |                                                  |
| Aluminum (ppm)                               | 1             | 0.6           | ND                        | 0.124                     | ND - 0.065             | No                | Treatment Process Residue, Natural Deposits      |
| Bromate (ppb)                                | 10            | 0.1           | NR                        | 2                         | ND - 5.9               | No                | Byproduct of Drinking Water Ozonation            |
| Fluoride (ppm) naturally-occurring           | 2             | 1             | 0.41                      | NR                        | 0.3-0.46               | No                | Erosion of Natural Deposits                      |
| Fluoride (ppm) treatment-related             | 2             | 1             | See Footnote 1            | 0.7                       | 0.1-0.9                | No                | Water Additive for Dental Health                 |
| Nitrate as N (ppm)                           | 10            | 10            | 1.37                      | 0.5                       | 0.5 - 2.17             | No                | Agriculture Runoff and Sewage                    |
| Nitrate and Nitrite as N (ppm)               | 10            | 10            | 1.38                      | 0.5                       | 0.5 - 2.18             | No                | Agriculture runoff and sewage                    |
| Secondary Standards** – T                    | ested in 201  | 9             |                           |                           |                        |                   |                                                  |
| Aluminum (ppb)                               | 200**         | 600           | ND                        | 124                       | ND – 65                | No                | Treatment Process Residue, Natural Deposits      |
| Chloride (ppm)                               | 500**         | n/a           | 40.9                      | 56                        | 27.9 - 65.9            | No                | Runoff or Leaching from Natural Deposits         |
| Color (color units)                          | 15**          | n/a           | ND                        | ND                        | ND – 1                 | No                | Naturally-occurring Organic Materials            |
| Odor (threshold odor number)                 | 3**           | n/a           | ND                        | ND                        | ND – 1                 | No                | Naturally-occurring Organic Materials            |
| Specific Conductance (µmho/cm)               | 1,600**       | n/a           | 611                       | 514                       | 465 - 852              | No                | Substances that Form Ions in Water               |
| Sulfate (ppm)                                | 500**         | n/a           | 79.8                      | 91                        | 48.1 - 134             | No                | Runoff or Leaching from Natural Deposits         |
| Total Dissolved Solids (ppm)                 | 1,000**       | n/a           | 384                       | 304                       | 296 - 590              | No                | Runoff or Leaching from Natural Deposits         |
| Turbidity (NTU)                              | 5**           | n/a           | <0.1                      | ND                        | ND - 0.3               | No                | Runoff or Leaching from Natural Deposits         |
| Unregulated Chemicals – T                    | ested in 2019 | 9             |                           |                           |                        |                   |                                                  |
| Alkalinity, total as CaCO <sub>3</sub> (ppm) | Not Regulated | n/a           | 170                       | 72                        | 69 - 220               | n/a               | Runoff or Leaching from Natural Deposits         |
| Boron (ppm)                                  | NL = 1        | n/a           | < 0.1                     | 0.12                      | ND - 0.14              | n/a               | Runoff or Leaching from Natural Deposits         |
| Calcium (ppm)                                | Not Regulated | n/a           | 70.5                      | 30                        | 29 - 104               | n/a               | Runoff or Leaching from Natural Deposits         |
| Chromium, Hexavalent (ppb)                   | Not Regulated | 0.02          | 0.59                      | ND                        | ND – 2.43              | No                | Erosion of Natural Deposits; Industrial Discharg |
| Hardness, total as CaCO <sub>3</sub> (ppm)   | Not Regulated | n/a           | 228                       | 127                       | 124 - 332              | n/a               | Runoff or Leaching from Natural Deposits         |
| Hardness, total (grains/gallon)              | Not Regulated | n/a           | 13                        | 7.4                       | 7.3 – 19               | n/a               | Runoff or Leaching from Natural Deposits         |
| Magnesium (ppm)                              | Not Regulated | n/a           | 12.7                      | 14                        | 8.3 - 17.8             | n/a               | Runoff or Leaching from Natural Deposits         |
| Perfluorohexanoic Acid (ppt)                 | Not Regulated | n/a           | NR                        | 2.3                       | 2.2 - 2.3              | n/a               | Industrial Discharge                             |
| pH (pH units)                                | Not Regulated | n/a           | 7.9                       | 8.4                       | 7.6 - 8.5              | n/a               | Hydrogen Ion Concentration                       |
| Potassium (ppm)                              | Not Regulated | n/a           | 2.6                       | 2.8                       | 1.7 - 3.9              | n/a               | Runoff or Leaching from Natural Deposits         |
| Sodium (ppm)                                 | Not Regulated | n/a           | 42.4                      | 56                        | 36.6 - 57              | n/a               | Runoff or Leaching from Natural Deposits         |
| Total Organic Carbon (ppm)                   | Π             | n/a           | NR                        | 2.4                       | 1.8 - 2.6              | n/a               | Various Natural and Man-made Sources             |

NR = Not Required to be analyzed; MCL = Maximum Contaminant Level; (MCLG) = Federal MCL Goal; n/a = not applicable; PHG = California Public Health Goal; NL = Notification Level The DDW considers 50 pCi/L to be the level of concern for beta particles

Contaminant is regulated by a secondary standard to maintain aesthetic gualities (taste, odor, color)

(1) The Fountain Valley water system treats your water by adding fluoride to the naturally occurring level in order to help prevent dental caries in consumers The fluoride levels in the treated water are maintained by the City within a control range of 0.6 ppm to 1.2 ppm.

| Turbidity – combined filter effluent<br>Metropolitan Water District Diemer Filtration Plant | Treatment<br>Technique | Turbidity<br>Measurements | TT<br>Violation? | Typical Source of Contaminant |  |  |  |  |
|---------------------------------------------------------------------------------------------|------------------------|---------------------------|------------------|-------------------------------|--|--|--|--|
| 1) Highest single turbidity measurement                                                     | 0.3 NTU                | 0.05                      | No               | Soil Runoff                   |  |  |  |  |
| 2) Percentage of samples less than 0.3 NTU                                                  | 95%                    | 100%                      | No               | Soil Runoff                   |  |  |  |  |

Turbidity is a measure of the cloudiness of the water, an indication of particulate matter, some of which might include harmful microorganisms

Low turbidity in Metropolitan's treated water is a good indicator of effective filtration. Filtration is called a "treatment technique" (TT). A treatment technique is a required process intended to reduce the level of contaminants in drinking water that are difficult and sometimes impossible to measure directly.

| Unregulated Chemicals Requiring Monitoring |                       |     |                        |                               |                        |                              |  |
|--------------------------------------------|-----------------------|-----|------------------------|-------------------------------|------------------------|------------------------------|--|
| Chemical                                   | Notification<br>Level | PHG | Average<br>Groundwater | Average MWD<br>Imported Water | Range of<br>Detections | Most Recent<br>Sampling Date |  |
| Bromide (ppm)                              | n/a                   | n/a | 0.14                   | NR                            | 0.081 - 0.242          | 2019                         |  |
| Germanium (ppb)                            | n/a                   | n/a | ND                     | 0.1                           | ND - 0.4               | 2019                         |  |
| Manganese (ppb)***                         | SMCL = 50             | n/a | 1.9                    | 1.73                          | ND - 12.1              | 2019                         |  |
| Total Organic Carbon (Unfiltered) (ppm)    | n/a                   | n/a | 0.17                   | NR                            | 0.08 - 0.38            | 2019                         |  |

SMCL = Secondary MCL

\*\*\*Manganese is regulated with a secondary standard of 50 ppb but was not detected, based on the detection limit for purposes of reporting of 20 ppb Manganese was included as part of the unregulated chemicals requiring monitoring.

## **Total Coliform Rule**

This Consumer Confidence Report (CCR) reflects changes in drinking water regulatory requirements instituted during 2016. All water systems are required to comply with the state Total Coliform Rule. Effective April 1, 2016, all water systems are also required to comply with the federal Revised Total Coliform Rule.

The new federal rule protects public health by ensuring the integrity of the drinking water distribution system by monitoring for the presence of microbials (i.e., total coliform and *E. coli* bacteria). The USEPA anticipates greater public health protection as the new rule requires water systems that are vulnerable to

microbial contamination to identify and resolve potential issues. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist. If found, these must be corrected by the water system.

#### Chloramines

The City imports water from MWDSC which produces water using chloramines, a combination of chlorine and ammonia, as its drinking water disinfectant. Chloramines are effective killers of bacteria and other microorganisms that may cause disease. Chloramines form fewer disinfection by-products and have no odor when used properly. People who use kidney dialysis machines may want to take special precautions and consult their physician for the appropriate type of water treatment.

Customers who maintain fish ponds, tanks or aquaria

should also make necessary adjustments in water quality treatment, as these disinfectants are toxic to fish. For further information or if you have any questions about chloramines please call (714) 593-4624.

| 2019 City of Fountain Valley Distribution System Water Quality |                     |                   |                        |                   |                                     |  |  |
|----------------------------------------------------------------|---------------------|-------------------|------------------------|-------------------|-------------------------------------|--|--|
| Disinfection<br>Byproducts                                     | MCL<br>(MRDL/MRDLG) | Average<br>Amount | Range of<br>Detections | MCL<br>Violation? | Typical Source<br>of Contaminant    |  |  |
| Total Trihalomethanes (ppb)                                    | 80                  | 21                | ND – 22                | No                | Byproducts of chlorine disinfection |  |  |
| Haloacetic Acids (ppb)                                         | 60                  | 3                 | ND - 1                 | No                | Byproducts of chlorine disinfection |  |  |
| Chlorine Residual (ppm)                                        | (4 / 4)             | 0.44              | 0.23 - 0.62            | No                | Disinfectant added for treatment    |  |  |
| Aesthetic Quality                                              |                     |                   |                        |                   |                                     |  |  |
| Color (color units)                                            | 15*                 | <3                | ND – 5                 | No                | Erosion of natural deposits         |  |  |
| Odor (threshold odor number)                                   | 3*                  | 1                 | 1 – 2                  | No                | Erosion of natural deposits         |  |  |
| Turbidity (NTU)                                                | 5*                  | <0.1              | 0.1 -1.8               | No                | Erosion of natural deposits         |  |  |

Eight locations in the distribution system are tested quarterly for total trihalomethanes and haloacetic acids; thirty are tested monthly for color, odor and turbidity. **MRDL** = Maximum Residual Disinfectant Level; **MRDLG** = Maximum Residual Disinfectant Level Goal; **NTU** = nephelometric turbidity units; **ND** = not detected. \*Contaminant is regulated by a secondary standard to maintain aesthetic qualities (taste, odor, color)

| Bacterial Quality                   | MCL                          | MCLG                  | Highest Monthly<br>Percent Positives | MCL<br>Violation? | Typical Source<br>of Contaminant     |
|-------------------------------------|------------------------------|-----------------------|--------------------------------------|-------------------|--------------------------------------|
| Total Coliform Bacteria             | 5.0%                         | 0                     | 0.81%                                | No                | Naturally present in the environment |
| No more than 5.0% of the monthly sa | mplas may be positive for to | tal coliform bacteria |                                      |                   |                                      |

The occurrence of 2 consecutive total coliform positive samples, one of which contains fecal coliform/*E*. coli, constitutes an acute MCL violation

#### Lead and Copper Action Levels at Residential Taps

|              | Action Level<br>(AL) | Public<br>Health Goal | 90 <sup>th</sup> Percentile<br>Value | Sites Exceeding AL /<br>Number of Sites | AL<br>Violation? | Typical Source<br>of Contaminant |
|--------------|----------------------|-----------------------|--------------------------------------|-----------------------------------------|------------------|----------------------------------|
| Copper (ppm) | 1.3                  | 0.3                   | 0.19                                 | 0 / 39                                  | No               | Corrosion of household plumbing  |
| Lead (ppb)   | 15                   | 0.2                   | ND                                   | 0 / 39                                  | No               | Corrosion of household plumbing  |

For the sampling event, 39 residences were tested for lead and copper at-the-tap. The most recent set of samples was collected in August 2018. Lead was detected in two homes, none of which exceeded the Action Level (AL). Copper was detected in 27 samples, none of which exceeded the AL. A regulatory AL is the concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

In 2019, no school submitted a request to be sampled for lead.

#### Unregulated Chemicals Requiring Monitoring in the Distribution System

| Chemical                       | Notification<br>Level | PHG      | Average<br>Amount | Range of<br>Detections | Most Recent<br>Sampling Date |
|--------------------------------|-----------------------|----------|-------------------|------------------------|------------------------------|
| Chlorodibromoacetic Acid (ppb) | n/a                   | n/a      | 0.041             | ND - 0.4               | 2019                         |
| Dibromoacetic Acid (ppb)       | n/a                   | n/a      | 0.37              | ND – 1.1               | 2019                         |
| Dichloroacetic Acid (ppb)      | n/a                   | MCLG = 0 | 0.012             | ND - 0.4               | 2019                         |



### About Lead in Tap Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing.

The City is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead

exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline, (800) 426-4791, or at www.epa.gov/lead.

### Source Water Assessments Imported (MWDSC) Water Assessment

Every five years, MWDSC is required by DDW to examine possible sources of drinking water contamination in its State Water Project and Colorado River source waters. The most recent watershed sanitary surveys of



its source water supplies from the Colorado River was updated in 2015 and the State Water Project was updated in 2016.

Water from the Colorado River is considered to be most vulnerable to contamination from recreation, urban/stormwater runoff, increasing urbanization in the watershed,

and wastewater. Water supplies from Northern California's State Water Project are most vulnerable to contamination from urban/stormwater runoff, wildlife, agriculture, recreation, and wastewater.

USEPA also requires MWDSC to complete one Source Water Assessment (SWA) that utilizes information collected in the watershed sanitary surveys. MWDSC completed its SWA in December 2002. The SWA is used to evaluate the vulnerability of water sources to contamination and helps determine whether more protective measures are needed.

A copy of the most recent summary of either Watershed Sanitary Survey or the SWA can be obtained by calling MWDSC at (800) CALL-MWD (225-5693).

#### Groundwater Assessment

An assessment of the drinking water sources for the City was completed in February 2003 and was updated in October 2016 for Wells 6, 9 and 10.

The groundwater sources are considered most vulnerable to the following activities not associated with detected contaminants: dry cleaners, gas stations, historic gas stations, NPDES/WDR permitted discharges, and sewer collection systems.

A copy of the complete assessment is available at State Water Resources Control Board, Division of Drinking Water, Santa Ana District, 2 MacArthur Place, Suite 150, Santa Ana, California 92707. A Message from Fountain Valley Water: **Rest Assured, Your Tap Water is Safe, Clean, and Reliable** 



The Coronavirus (COVID-19) does not present a threat to our water supplies. We continually monitor and test the quality of your water and are committed to ensuring its safety. Providing a safe, clean, reliable supply of water for you and your family is our highest priority. For more information, visit: www.fountainvalley.org/1205/Water-Quality-Reports-FAQs

This report contains important information about your drinking water. Translate it, or speak with someone who understands it. Este informe contiene información importante sobre su agua para beber. Traducir, o hable con alguien que entiende. Bản bảo cáo có ghi những chi tiết quan trọng về phẩm chất nước trong cộng dống quý vị. Hãy nhờ người thông dịch, hoặc hỏi một người bạn biết rõ về vấn đề này.



OUNTAIN VALLEY

#### **City of Fountain Valley**

Field Services - Water Department 17300 Mt. Herrmann Street Fountain Valley, California 92708



ECRWSS

**POSTAL CUSTOMER** 

